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Abstract

A modified Langevin equation is developed to represent the dispersion of heat markers from point sources that

originate at different locations in a channel through which a fluid is flowing turbulently. Of particular interest is the de-

scription of wall sources. Since a heated (or cooled) wall may be represented as a distribution of point sources (or sinks),

these results can be used to describe heat transfer problems which have different configurations of heat transfer surfaces.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A bulwark of turbulence theory has been Taylor�s [1]
description of the statistical behavior of a large number

of fluid particles originating from a point source in a

homogeneous isotropic turbulent field. However, its

usefulness is limited because most turbulent fields are

nonhomogeneous. Langevin [2] developed a treatment

of Brownian motion, in which the force exerted by the

molecules of the surrounding fluid consists of a damping

term which varies linearly with the velocity of the par-

ticle and a rapidly varying stochastic term. Lin and Reid

[3] and Obukhov [4] have shown that the Langevin

equation gives the same result as Taylor�s analysis if the
Lagrangian correlation is represented by expð�t=sÞ,
where s is the Lagrangian time-scale.
A number of researchers have explored modifications

of the Langevin equation which would allow for its use

in nonhomogeneous fields [5–15]. Iliopoulos and Hanr-

atty [16] tested the approach of Thomson [11] by com-

paring calculations for a source of fluid particles with

experiments done in a direct numerical simulation

(DNS) of turbulent flow in a channel. In these calcula-

tions, a non-Gaussian forcing function was used and a

source of fluid particles was located at xþ2 ¼ 40, where x2
is the distance from the wall and the plus superscript

indicates that x2 is made dimensionless using the friction
velocity, v�, and the kinematic viscosity, m. Mito and
Hanratty [17] used a joint Gaussian distribution for the

forcing function and studies of sources at different lo-

cations in a channel flow to give a more accurate spec-

ification of the spatial variation of the time-scale in the

Langevin equation than was used by Iliopoulos and

Hanratty [16].

This paper explores the possibility of using a modi-

fied Langevin equation to describe the dispersion of

thermal markers. Of particular interest are the results for

a point source (or a sink) located on the wall. This in-

troduces a number of issues not considered in the

analysis of the dispersion of fluid particles. The direct

influence of molecular thermal diffusion needs to be

considered not only because it adds to the dispersion but

also because it is the mechanism by which the dispersing

markers are removed from the wall. This is done by

considering that the markers are displaced both by

convection and by a random walk associated with mo-

lecular diffusion [18,19]. Because of molecular diffusion

the marker need not follow a fluid particle. This effect is

taken into account by allowing the time-scales in the

Langevin equation to depend on the Prandtl number (or

the Peclet number). Finally, it should be pointed out

that a consideration of the behavior of wall sources

provides a strong test of the ability of a modified
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Langevin equation to describe dispersion in an inho-

mogeneous field.

The system considered is fully developed turbulent

flow in a channel at Res ¼ 150, where the Reynolds
number is defined using the friction velocity and the

half-height of the channel. The calculated results are

evaluated by comparing them with experiments carried

out in a DNS. Studies were made for Pr ¼ 0:1, 0.3 and 1
for point sources located at xþ2 ¼ 0; 1; 2; 5; 10; 20; 40;
70; 100; 130; 150.
A principal motivation for this study is the description

of turbulent heat transfer from a wall by Lagrangian

methods. Papers by Hanratty [20] and by Papavassiliou

and Hanratty [21,22] have shown how temperature fields

can be calculated by considering a hot wall as an array

of point sources of heat. This provides a more funda-

mental way to understand the physics of turbulent

transfer than does an Eulerian method. For example, the

measured spatial variation of Eulerian turbulent diffu-

sivities can be interpreted as being related to the time

dependency of the dispersion of heat from a wall source.

Furthermore, the Lagrangian approach can sometimes

provide a more robust way of doing heat transfer cal-

culations. For example, Papavassiliou and Hanratty [21]

have shown that a DNS of a turbulent flow can be used

to calculate heat transfer at arbitrarily large Prandtl

numbers by using Lagrangian methods.

Therefore, the calculations for dispersion from wall

sources are used to calculate the fully developed tem-

perature field that results when a fluid flows through a

channel in which one wall is heated and one wall is

cooled. The hot wall is considered to be an array of heat

sources and the cold wall, as an array of heat sinks. The

rate of heat transfer at both walls are the same so that,

under fully developed conditions, the heat flux, qw, does
not vary with x2. Heat transfer coefficients, Kb and Kc,
are defined as

qw ¼ KbðTb � TwÞ ¼ KcðTc � TwÞ; ð1Þ

where Tb is the bulk fluid temperature and Tc is the
centerline temperature.

2. Lagrangian experiments in the DNS

A pseudospectral fractional step method [23] was

used to calculate the turbulent velocity field. The di-

Nomenclature

A heat transfer area

cp specific heat at constant pressure

dl1, dl2 random forcing functions in the x1, x2 di-
rections

dl0
1, dl

0
2 fluctuating components of dl1 and dl2

k thermal conductivity

Kb heat transfer coefficient defined by using Tb,
¼ qw=ðTb � TwÞ

Kc heat transfer coefficient defined by using Tc,
¼ qw=ðTc � TwÞ

h half channel height

P probability density function of heat markers

Pes Peclet number ¼ PrRes

Pr Prandtl number ¼ qcpm=k
Q quantity of heat

qw heat flux at the wall

R1, R2 Lagrangian velocity autocorrelations

Res Reynolds number ¼ v�h=m
t time

t0 time instant at which heat markers are re-

leased

T temperature

T � friction temperature ¼ qw=qcpv�

Tb bulk fluid temperature

Tc centerline temperature

Tw wall temperature

~uu1, ~uu2 velocity components in the x1, x2 directions

U1 mean velocity component in the x1 direction
u1, u2 fluctuating velocity components in the x1, x2

directions

v� friction velocity

w1, w2 Gaussian random numbers in the x1, x2 di-
rections

x1, x2, x3 streamwise, wall-normal, spanwise coordi-
nates

Greek symbols

at turbulent diffusivity ¼ �vh=ðdT=dyÞ
m kinematic viscosity

h fluctuating temperature

q density

r1, r2 turbulence intensities in the x1, x2 directions
rm root-mean square of random walk

s Lagrangian time-scale in homogeneous iso-

tropic turbulence

s1, s2 Lagrangian time-scales in the x1, x2 direc-
tions

Superscripts and subscripts

ð Þ Eulerian average calculated from a DNS

h i ensemble average

ð Þþ value made dimensionless with wall param-

eters

ð Þn, ð Þnþ1 values at the nth and ðnþ 1Þth time steps
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mensions of the channel were 1900 v�=m, in the stream-
wise direction ðx1Þ and 950 v�=m in the spanwise direction
ðx3Þ. The computational grid was 128
 65
 128. The
resolutions were Dxþ1 ¼ 15, Dxþ3 ¼ 7:4 and Dxþ2 ¼ 0:18 at
the wall to 7.4 at the center. No slip boundary condi-

tions were used at xþ2 ¼ 0, 300, and periodicity was as-
sumed in the x1 and x3 directions. The time step was
Dtþ ¼ 0:25.
The tracking method used to follow fluid particles or

thermal markers is described in papers by Kontomaris

et al. [24] and by Kontomaris and Hanratty [19]. The

displacements of heat markers are calculated as the sum

of an advective component and a molecular diffusive

component:

dxi ¼ ðUi þ uiÞdt þ rmwi; ð2Þ

where Ui and ui are the mean and fluctuating velocity at
the location of the heat source and wi is a random dis-

placement defined by a Gaussian probability distribu-

tion function. The dimensionless root-mean square of

the displacements associated with molecular diffusion is

given by rþ
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dtþ=Pr

p
where dtþ is the dimensionless

time interval. Because of the homogeneity in the x1 and
x3-directions, studies of dispersion from a source at a

given x2 were carried out by using 16,129 sources that
were uniformly distributed over the x1–x3 plane. The
Lagrangian calculation was performed over a time pe-

riod of 400 m=v�2. The time step for the tracking was 0.25
m=v�2.
The bounce condition (perfectly elastic collision) was

used when a thermal marker hit the wall. This is

equivalent to enforcing the boundary condition of an

adiabatic wall [18]. Three runs were made by using dif-

ferent initial flow fields that were separated by time in-

tervals of about 200 m=v�2, so that a total of 48,387
trajectories were used. The DNS results for the behavior

of a single wall source obtained by Papavassiliou and

Hanratty [21,22] over a time period of 2750 m=v�2 were
used to calculate the fully developed temperature field.

The method for doing this is explained in Section 4.2.

3. Langevin equation

In a Lagrangian stochastic simulation a Langevin

equation, rather than a DNS, is used to calculate fluid

velocities at locations of heat markers. The displace-

ments of heat markers are calculated with (2). A modi-

fied Langevin equation which specifies the change of ui
over the interval dt is given as

d
ui
ri

� �
¼ � ui

risi
dt þ dli þ dl0

i; ð3Þ

where si is the Lagrangian time-scale and dli is a ran-

dom forcing function which consists of a mean drift dli

and a fluctuation dl0
i. (Since a fully developed condition

will be assumed, the time mean and the ensemble mean

are equal.) The Eulerian root-mean square of the ve-

locity fluctuation in the i-direction, ri, which is calcu-

lated from the DNS, is introduced in (3), as suggested by

Thomson [11]. The Einstein convention of summing

over repeated indices is not used. The specification of si
is discussed in Section 6.1. The mean drift dli is ob-

tained by taking an ensemble average of (3) for a large

number of trajectories:

dli ¼
oðu2ui=riÞ

ox2
dt; ð4Þ

where the overbar indicates an Eulerian average ob-

tained from the DNS.

The covariances of the random forcing functions dl0
i

are obtained by using the definition of a stochastic dif-

ferential [16]:

dl0
idl

0
j ¼

oðuiuju2=rirjÞ
ox2

�
þ uiuj

rirj

1

si

�
þ 1

sj

��
dt þ oðdtÞ2:

ð5Þ

The random forcing function dl0
i is assumed to be jointly

Gaussian. The use of a non-zero value of the correlation

dl0
1dl

0
2 has been shown by Mito and Hanratty [17] to

improve the calculation of the streamwise dispersion of

fluid particles but not to affect the calculation of dis-

persion in the wall-normal direction. The triple corre-

lation in (5) is taken to be zero. This is needed for the

modified Langevin equation to fulfill the condition of

well-mixedness [17] when an assumption of a joint

Gaussian function is used for the forcing function.

4. Numerical methods

4.1. Time advancement scheme for the Lagrangian

stochastic simulation

Initial conditions x0i and ~uu0i for the simulation are
specified from an instantaneous field obtained from the

DNS. Trajectories of heat markers are calculated by

integrating (2) by using the first-order Euler explicit

method at the first time step and the second-order

Adams–Bashforth method after that step. The fluid ve-

locities at the locations of heat sources ~uui are calculated
by using the fully implicit method.

~uunþ1i ¼ ~uuni þ dUnþ1
i þ dunþ1i ; ð6Þ

where dunþ1i is calculated with the modified Langevin

equation,

dunþ1i ¼ unþ1i

�
� dt

snþ1i

þ dr
nþ1
i

rnþ1
i

�
þ rnþ1

i dli
nþ1�

þ dl0nþ1
i

�
;

ð7Þ
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where dUnþ1
i ¼ Unþ1

i � Un
i and dr

nþ1
i ¼ rnþ1

i � rn
i . The

superscripts, n and nþ 1, represent the times, tn and tnþ1,
at which these variables are calculated. By substituting

unþ1i ¼ uni þ dunþ1i into (7), dunþ1i is obtained as

dunþ1i ¼ uni

��
� dt

snþ1i

þ dr
nþ1
i

rnþ1
i

�
þ rnþ1

i dli
nþ1�

þ dl0nþ1
i

��

1

�	
þ dt

snþ1i

� dr
nþ1
i

rnþ1
i

�
: ð8Þ

This fully implicit treatment stabilizes the time ad-

vancement in the stochastic simulation of heat markers

by avoiding extremely large (nonphysical) velocity fluc-

tuations in the near-wall region. This problem does not

arise in the simulation of fluid particles [11,17], so a

partially explicit method could be used in solving the

velocities of fluid particles.

4.2. Calculation of fully developed temperature profiles

The motivation for the present study is the use of

Lagrangian methods to calculate mean temperature

profiles. In this approach, a hot wall is represented by a

number of sources of heat and a cold wall is represented

by a number of sinks of heat. The method for doing this

is outlined in a paper by Papavassiliou and Hanratty

[21]. Different types of configurations can be considered.

Finite or infinitely long heated (and /or cooled) walls can

be used. The wall can have a constant heat flux or a

constant temperature. Papavassiliou and Hanratty [21]

successfully used data for a point source obtained from

experiments in a DNS to describe fully developed tem-

perature profiles with constant temperature walls. To

complete the present paper, the results from the

Langevin representation of point sources are used to

calculate temperature fields for a constant heat flux wall.

Since only fully developed temperature fields will be

calculated, an infinitely long heated (or cooled) wall will

be considered. The goal is to use the probability density

functions for instantaneous sources to calculate the

temperature of the fluid. Because the heated wall is in-

finitely long, temperatures will vary only with time and

with xþ2 . Heating is started at time zero with the intro-
duction of an instantaneous source with a strength

dQ ¼ Aqw dt; ð9Þ

where A is the heat transfer area and qw is rate of heat
transfer per unit area. At some time later the heat is

distributed uniformly over the channel cross-section.

The amount of heat in a bin of thickness dx2 is
qcp dTAdx2. The probability of a heat particle being lo-
cated at a given x2 is

Probability ¼ qcp dTAdx2
Aqwdt

: ð10Þ

The probability distribution function Pðx2; tÞ is thus re-
lated to the temperature distribution as follows:

P ðx2; tÞ ¼
qcpdT
qwdt

: ð11Þ

This can be made dimensionless using v�, m and a friction
temperature T � ¼ qw=qcpv�. Thus

dTþ ¼ Pþdtþ: ð12Þ

Eq. (12) gives the temperature at a given time tþ that
results from an instantaneous wall source that entered

the field between tþ1 and t
þ
1 þ dtþ, where 06 tþ1 < tþ. The

contribution to the temperature from all the instanta-

neous sources is, therefore, given as

Tþ ¼
Z tþ

0

Pþðxþ2 ; tþ1 Þdtþ1 : ð13Þ

This equation relates Tþðxþ2 ; tþÞ to the probability den-
sity functions for the case in which the heat flux qw is
constant. If a solution for a constant temperature wall

is sought then qwðtþ1 Þ needs to be a function of time. It is
convenient to define qwðtþ1 Þ ¼ wðtþ1 Þqwr where qwr is some
reference heat flux. Eq. (13) is then changed to

Tþ ¼
Z tþ

0

wðtþ1 ÞPþðxþ2 ; tþ1 Þdtþ1 ; ð14Þ

where the friction temperature is defined using the

converged temperature profile and wðtþ1 Þ is selected so
that Tþ

w is constant.

Values of Tþ were calculated from (13) and the

probability distribution functions. A singularity in Pþ

exist at tþ ¼ 0, whereby Pþ ! 1. Therefore, an ana-
lytical solution for Pþ that considers only molecular

transport was used from tþ ¼ 0 to 0.25:

Tþ ¼
ffiffiffiffiffiffiffiffiffiffiffi
4tþPr

p
ierfc

xþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4tþ=Pr

p : ð15Þ

Eq. (15), which considers only molecular conduction, is

given in Carslaw and Jaeger [25].

5. Results of Lagrangian experiments in the DNS

5.1. Lagrangian correlation coefficients

Lagrangian correlations were determined from the

DNS of dispersion from point sources by calculating the

ensemble mean, over a large number of trajectories, of

the product of the fluid velocity at the locations of a

thermal marker at times t and t0, where the marker is
introduced into the field at t0. These need not be the
same as for fluid particles because the marker can escape

from the fluid particle by molecular diffusion. To be
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consistent with the Langevin analysis, a Lagrangian

correlation coefficient is defined as

Riðxþ2 ; tnÞ ¼
hðu0i =r0i Þðuni =rn

i Þi
hðu0i =r0i Þ

2i1=2hðuni =rn
i Þ
2i1=2

: ð16Þ

Here, the velocities are normalized with the rms of the

local velocity fluctuations determined in an Eulerian

framework and the brackets represent an ensemble av-

erage.

Values of R1 and R2 are presented in Fig. 1 for Pr ¼ 1.
The time, t, has been made dimensionless with wall pa-
rameters. Results are presented for experiments in which

the source is located at different dimensionless distances

from the wall. The Lagrangian correlation for R1 decays
more slowly than the correlation for R2. Both R1 and R2
decay more rapidly for sources located closer to the wall.

The correlations show a parabolic shape for very small

tþ, which scales with the Kolmogorov time-scale [26].
These results are close to what has been obtained for

fluid particles [17].

Fig. 2 presents calculated values of R1 and R2 for
Pr ¼ 0:1. These are found to be smaller than observed
for Pr ¼ 1 and for fluid particles. Furthermore, the

correlations show an exponential decay at small tþ.
These results show that the ability of thermal markers to

follow the fluid turbulence decreases with decreasing Pr.

5.2. Dispersion of heat sources at xþ2 ¼ 40

The concentration profiles of hot particles charac-

terized by Pr ¼ 1 are shown in Fig. 3a for an instanta-
neous source that was introduced into the fluid at

tþ ¼ 0, xþ2 ¼ 40. The solid curves are the results obtained
from the DNS. These were calculated by using 40

equispaced bins in the region where the heat markers are

located. The results are jagged, particularly at large

times, because the number of samples was not large

enough.

For small tþ the concentration profile has a maxi-
mum close to xþ2 ¼ 40. However, at tþ ¼ 25 the profile is
seen to be asymmetric. The hot particles disperse more

rapidly in the positive direction because the wall-normal

velocity fluctuations are greater for xþ2 > 40 than for
xþ2 < 40. Because of the zero flux condition the heat
particles pile up at the wall. A peak is located at the wall

at tþ ffi 200.
The effect of an increase in thermal conductivity on

the wall-normal dispersion is displayed by comparing

results for Pr ¼ 0:1 in Fig. 3b with results for Pr ¼ 1 in
Fig. 3a. The decrease in Pr causes a much more rapid

dispersion because the direct contributions of molecular

diffusivity are larger. The maximum in the neighborhood

of xþ2 ¼ 40 is smaller and it disappears at a smaller tþ.
Streamwise dispersions of hot particles admitted in

the fluid at xþ2 ¼ 40, tþ ¼ 0, xþ1 ¼ x0þ1 are presented in
Fig. 1. Lagrangian velocity autocorrelation seen by heat sour-

ces with Pr ¼ 1.

Fig. 2. Lagrangian velocity autocorrelation seen by heat sour-

ces with Pr ¼ 0:1.
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Fig. 4 for Pr ¼ 1 and Pr ¼ 0:1. Again, concentration
profiles were calculated by using 40 equispaced bins. The

concentrations at a given ðx1 � x01Þ
þ
include particles at

all xþ2 . The hot particles are transported downstream by
the mean velocity. The peaks are located at approxi-

mately the same ðx1 � x01Þ
þ
for Pr ¼ 1 and for Pr ¼ 0:1.

However, the dispersions around the peaks are quite

different. The larger dispersion for Pr ¼ 0:1 is manifested
by smaller peaks and a wider spread of the hot particles.

Because more hot particles are accumulated in the slower

moving fluid near the wall for Pr ¼ 0:1 than for Pr ¼ 1
(see Fig. 3) larger concentrations are observed for small

ðx1 � x01Þ
þ
. However, longer upstream tails are observed

for Pr ¼ 1 than for Pr ¼ 0:1 at large tþ because particles
trapped very close to the wall have a greater difficulty to

escape because of the smaller molecular diffusivity.

5.3. Dispersion from instantaneous wall sources

Of particular importance to the goal of the paper are

the results for a wall source shown in Fig. 5. At small

times hot particles disperse from the wall source by

molecular diffusion. As they diffuse out to larger dis-

tances from the wall, turbulent velocity fluctuations play

a more important role. Noting that the scale on the

ordinate is smaller for Pr ¼ 0:1 than for Pr ¼ 1, we ob-
serve that the dispersion is much greater for Pr ¼ 0:1.
The dominance of molecular diffusion in dispersing hot

Fig. 4. Streamwise dispersion of heat sources released at

xþ2 ¼ 40 for (a) Pr ¼ 1 and (b) Pr ¼ 0:1.

Fig. 3. Wall-normal dispersion of heat sources released at

xþ2 ¼ 40 for (a) Pr ¼ 1 and (b) Pr ¼ 0:1.

Fig. 5. Wall-normal dispersion of wall sources for (a) Pr ¼ 1
and (b) Pr ¼ 0:1.
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particles away from the wall at small tþ is illustrated in
Fig. 6.

The curves with a dot and a dash represent the

probability distribution functions calculated for a con-

ducting medium given in Carslaw and Jaeger [25] as

Pþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ptþ=Pr

p exp

�
� xþ22
4tþ=Pr

�
; ð17Þ

where Pþ is doubled by taking account of the bounce

condition of particles at the wall. The solid curves rep-

resent calculations done in the DNS of a turbulent field.

The results are quite close to (17) for tþ 6 10 and start to

deviate from (17) at tþ ¼ 25.
Streamwise dispersions of hot particles originating

from a wall source are shown in Fig. 7. The solid curves

represent calculations done in the DNS. Since the par-

ticles diffuse away from the wall faster for Pr ¼ 0:1, they
experience higher fluid velocities sooner. Consequently,

the peaks are located farther downstream for tþ ¼ 50
and for tþ ¼ 100.

6. Results from the stochastic model

6.1. Definition of the Lagrangian time-scale

The use of the modified Langevin equation to model

possible paths of particles from heat sources requires the

Eulerian statistics, which are obtained from the DNS,

and the definition of a Lagrangian time-scale which is

obtained from the correlation coefficients shown in Figs.

1 and 2. We follow the approach taken by Mito and

Hanratty [17] to define si as the value of t at which
Ri ¼ 0:368. These si are very close to the integral time-
scales.

Fig. 8 presents values of sþi obtained in this way for
Pr ¼ 0:1, 0.3, 1,1. The values for Pr ¼ 1 are the time-

scales calculated for fluid particles by Mito and Hanr-

atty [17]. These results show a decrease in sþi with

decreasing Pr. The sþi for Pr ¼ 1 are seen to be very close
to the values for Pr ¼ 1. Values of sþi obtained in this
way for Pr ¼ 10 are equal to the results for Pr ¼ 1.
Fig. 9 plots the ratio of s2 for a given Pr to the s2

obtained for Pr ¼ 1. These show that the assumption
s2=s2; Pr¼1 is constant over the whole channel cross-

section would provide a good approximation for speci-

fying sþ2 (x
þ
2 ) for small Pr. The deviation of si at very

small xþ2 is of no consequence because turbulence is

having a negligible effect in this region. It is of interest to

note that these results are similar to what has been found

by Piller et al. [27] for turbulent diffusivities. Table 1

gives values of the ratio of the average turbulent diffu-

sivities, at, over the whole cross-section of the channel,

Fig. 6. Wall-normal dispersion of wall sources at small times

for (a) Pr ¼ 1 and (b) Pr ¼ 0:1. Fig. 7. Streamwise dispersion of wall sources for (a) Pr ¼ 1 and
(b) Pr ¼ 0:1. Effect of streamwise velocity fluctuation was in-
cluded.

Y. Mito, T.J. Hanratty / International Journal of Heat and Mass Transfer 46 (2003) 1063–1073 1069



except for the conductive sublayer. These are presented

as the ratio of at for a given Pr < 1 to the at obtained for
Pr ¼ 1. The Peclet number, Pes, is the product of Res

and Pr. Values of the spatial average of the ratio of sþ2
obtained from data in Fig. 8 outside the conductive

sublayer are also given in Table 1. Of particular interest

is recognition that s2=s2; Pr¼1 is very close to the ratio,
at=at; Pr¼1.

6.2. Use of the Langevin equation to predict dispersions

from an instantaneous point source

The modified Langevin equation was used to calcu-

late dispersion from instantaneous point sources located

at xþ2 ¼ 0, 1, 2, 5, 10, 20, 40, 70, 100, 130, 150. Good
agreement was obtained between wall-normal concen-

tration profiles determined in the experiments done with

a DNS. This is illustrated in Figs. 3 and 5 for sources

located at xþ2 ¼ 40 and at the wall. Good agreement with
the DNS experiments was also obtained for streamwise

dispersions for all cases except those for which the

source was located at the wall and at xþ2 ¼ 1. This is
illustrated in Fig. 4 for the case in which the instanta-

neous source was located at xþ2 ¼ 40. Fig. 7 compares
streamwise dispersions from wall sources. This shows

significant differences between the DNS and the calcu-

Fig. 9. Plots of ratios of Lagrangian time-scales to the values

for fluid particles.

Fig. 8. Plots of Lagrangian time-scales: (a) sþ1 and (b) sþ2 .

Table 1

Ratio of turbulent diffusivities to the value for Pr ¼ 1 [27] and
ratio of Lagrangian time-scales in the wall-normal direction to

the value for Pr ¼ 1
Pes Res at=at; Pr¼1 s2=s2; Pr¼1

15 150 0.67 0.68

15 300 0.66 –

45 150 0.84 0.90

150 150 1 1

Fig. 10. Streamwise dispersion of wall sources for (a) Pr ¼ 1
and (b) Pr ¼ 0:1. Influence of streamwise velocity fluctuation
was ignored.
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lations at small times. However, good agreement is ob-

tained at large times (tþ P 200).

Dispersion in the streamwise direction occurs mainly

because lateral mixing causes the thermal markers to see

different mean velocities (Taylor diffusion). However,

turbulent velocity fluctuations in the streamwise direc-

tion also play an important role. The poor agreement

between the model and the DNS experiments seen in

Fig. 7 could indicate that the model is overpredicting the

contribution of streamwise velocity fluctuations close

to the wall. This interpretation was investigated by

neglecting the contribution of streamwise fluctuations.

Thus dispersion in the streamwise direction is due only

to Taylor diffusion and to molecular diffusion. The re-

sults of calculations carried out in this way are presented

for a wall source in Fig. 10. The agreement with exper-

iments done in a DNS is much better than shown in Fig.

7, at small times. The agreement at large times could be

improved if the influence of turbulent velocity fluctua-

tions in the streamwise direction were considered.

6.3. Fully developed temperature profiles

Values of temperature Tþ calculated as resulting

from contributions of instantaneous hot sources be-

tween tþ1 ¼ 0 and tþ1 ¼ tþ were calculated with (13), (15)
and the probability distribution functions in Fig. 5. Fig.

11 compares Tþðxþ2 ; tþÞ obtained by using the Langevin
model and experimental results obtained in the DNS to

represent Pþ. Both solutions give dTþ=dxþ2 ¼ �Pr at
xþ2 ! 0. Thus larger temperature gradients and larger

temperatures are calculated at the wall for Pr ¼ 1 than
for Pr ¼ 0:1. The temperature gradient at the other wall,
xþ2 ¼ 300, is zero because a no flux condition was

maintained there. The agreement between calculations

made with the Langevin equation and results from the

DNS experiment is good, but not perfect. The small

differences could reflect limitations in the model or could

suggest that Lagrangian time-scales, s2, should have
been slightly modified.

Fig. 12 shows calculations for tþ ¼ 2750 for the case
in which one wall is heated and the other is cooled. The

Lagrangian representation considers the bottom wall

(xþ2 ¼ 0) to consist of a series of sources and the top wall
as a series of sinks. The temperature profile is the sum of

these two contributions. The curves in Fig. 11 would

represent the heat sources. A modification which sub-

stitutes �Tþ for Tþ and (300� xþ2 ) for x
þ
2 represents the

cold sources. Fig. 12 presents the stationary state that is

reached at large tþ. The agreement between calculations
in which the Langevin equation and experiments in a

Fig. 11. Temperature profiles for the boundary condition of a

constant heat flux for (a) Pr ¼ 1 and (b) Pr ¼ 0:1.

Fig. 12. Fully developed mean temperature profiles.

Fig. 13. Dimensionless heat transfer coefficients, where Kb and
Kc indicate the use of temperature driving forces defined with
the bulk temperature and the centerline temperature.
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DNS are used to represent probability distribution

functions is again good, but not perfect.

Dimensionless heat transfer coefficients, Kþ
b and Kþ

c ,

are plotted in Fig. 13. The symbols 
 and þ represent

DNS Eulerian calculations. The squares and circles

represent Lagrangian calculation in which the proba-

bility density functions were obtained from DNS exper-

iments and the triangles, calculations with the Langevin

equation.

7. Concluding remarks

Mito and Hanratty [17] have shown that a modified

form of the Langevin equation can be used to describe

dispersion from a point source in a nonhomogeneous

field. The system considered was turbulent flow in a

channel. Information on the spatial variation of the

Eulerian turbulence and on the spatial variation of a

Lagrangian time-scale, si, had to be specified. Correla-
tions for si were presented.
One possible use of this approach is the description

of the temperature field generated by turbulent flow over

a heated (or cooled) surface as resulting from an array of

sources located on the wall. This is a more complicated

problem than that considered by Mito and Hanratty [17]

in that the results are more sensitive to the specification

of the turbulence close to the wall and that molecular

diffusion needs to be considered because this is the

mechanism by which heat is transmitted from the wall to

the fluid.

This paper shows how the work of Mito and Hanr-

atty [17] can be extended to describe the behavior of a

source on the wall. It shows for Pes > ca 150 that si for
fluid particles can be used. For Pes < ca 150 the si will
be lower than that for fluid particles. The fractional

decrease can be considered to be roughly a constant and

to be approximately equal to the decrease in the turbu-

lent diffusivity.

Calculated wall-normal temperature profiles are in

remarkably good agreement with experiments done in a

DNS, considering that such a simple equation is used

to represent a flow with so much complexity. The de-

scription of an instantaneous wall source can be used to

describe a variety of problems with different configura-

tions of the heat transfer surfaces. This is demonstrated

in this paper for the fully developed temperature profile

that can develop for turbulent flow through a channel

with one heated and one cooled wall.
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